Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

5,8,11-Trioxa-2,14-dithiabicyclo[13.4.1]icosa-1(19),15,17-trien-20-one

Kanji Kubo et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

electronic papers

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

5,8,11-Trioxa-2,14-dithiabicyclo [13.4.1]icosa-1(19),15,17-trien-20one

Kanji Kubo,* Akira Mori, Nobuo Kato and Hitoshi Takeshita

Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan Correspondence e-mail: kubo-k@cm.kyushu-u.ac.jp

Received 19 June 2000 Accepted 13 July 2000

Data validation number: IUC0000193

The title compound, $C_{15}H_{20}O_4S_2$, crystallizes in a chiral space group although it contains mirror symmetry. The tropone ring is inclined at an angle of 50.3 (1)° to the crown ether ring. The planarity of the tropone ring system itself is diminished by as much as 20.8 (4)°.

Comment

Mercurophilic dithiocrown derivatives having a troponoid pendant (Takeshita et al., 1993; Mori et al., 1996, 1997; Kubo et al., 1998, 2000) were recently prepared since these molecules are excellent carriers of the Hg^{II} ion, which is one of the most critical heavy metal ions from an environmental viewpoint (Bacon & Kirch, 1985, 1987; Izatt et al., 1985a,b, 1986; Parham & Shamsipur, 1994). Based on their reversible complexation behaviours with Hg^{II} salts, particularly noteworthy is the exclusive and selective transport of the Hg^{II} ion among various metal ions through a liquid membrane. As a matter of efficiency in the transport of the Hg^{II} ion, dithiocrown derivatives condensed with the tropone system showed a dependence on the cavity size of the crown ethers (Mori et al., 1996). This was confirmed by X-ray diffraction studies (Kubo et al., 1995, 1996, 2000; Kato et al., 1995; Mori et al., 1998). In the Hg^{II} salt complex of 5,8,11,14-tetraoxa-2,17-dithiabicyclo[16.4.1]tricosa-1(22),18,20-trien-23-one, which is an excellent carrier of Hg^{II} ion through a liquid membrane, the Hg^{II} ion is at the centre of a dithiacrown ring to form a normal penetrated complex. The title compound, 5,8,11-trioxa-2,14dithiabicyclo[13.4.1]icosa-1(19),15,17-trien-20-one, (I), formed a (I)-2.5HgCl₂-H₂O complex. The Hg^{II} atom in the complexation was not in the cavity of the crown system; a Hg^{II} atom was coordinated by ethereal O atom to form a tetrahedral coordination and the other Hg^{II} atoms are coordinated by both the tropone carbonyl O atom and the thioether sulfur atom to form a side-on complex. In order to reveal the detailed structure of troponoid dithiocrown derivatives and

their complexes, (I) has been investigated by an X-ray crystallographic analysis.

The title compound crystallizes in a chiral space group although it contains mirror symmetry. The tropone ring defined by atoms O1 and C1-C7 makes an angle of 50.3 (1)° with the crown ether ring defined by atoms S1, O2–O4 and S2. The conformation of the ethereal moiety is S(g)C(g)C(t)O(t)C(g)C(t)O(t)C(g)C(t)O(t)C(g)C(g)S, where t and g denote trans and gauche forms, respectively. The conformation of all CH2-O bonds was trans and distinct from that [S(g)C(g)C(t)O(t)C(g)C(g)O(t)C(g)C(t)O(g)C(g)C(g)S]of (I)-2.5HgCl₂-H₂O (Kubo et al., 2000). On the other hand, the angle between the least-squares planes C1/C2/C7 and C2/ $C_3/C_6/C_7$ is 20.8 (4)°. The corresponding angle of (I) is smaller than that (33.8°) of 5-oxa-2,8-dithiabicyclo[7.4.1]tetradeca-9,11,13-trien-14-one (Mori et al., 1998) and similar to that (20.4°) of the HgCl₂ complex of 5,8,11,14-tetraoxa-2,17dithiabicyclo[16.4.1]tricosa-1(22),18,20-trien-23-one (Kubo et al., 1996). This means that the larger ethereal ring of the crown ethers leads to a smaller deviation from planarity of the sevenmembered ring of (I). The angle (20.8°) of (I) is larger than that (7.5°) of (I)-2.5HgCl₂-H₂O, suggesting that the complexation with Hg^{II} decreases the deviation from planarity of the seven-membered ring. Interestingly, all tropone C-O, C-C and C-S bond lengths of (I) are similar to those of (I)-2.5HgCl₂-H₂O (Kubo et al., 2000).

Experimental

The title compound, (I), was obtained by condensation from NaHmediated 3,6,9-trioxa-1,11-undecanedithiol and 2,7-dibromotropone (Takeshita *et al.*, 1993). Single crystals of (I) were obtained by crystallization from CHCl₃.

Crystal data	
$C_{15}H_{20}O_4S_2$	Mo $K\alpha$ radiation
$M_r = 328.43$	Cell parameters from 25
Orthorhombic, $P2_12_12_1$	reflections
a = 9.682(5) Å	$\theta = 10.6 - 18.3^{\circ}$
b = 18.654 (5) Å	$\mu = 0.340 \text{ mm}^{-1}$
c = 8.977 (5) Å	T = 296 (2) K
V = 1621.3 (13) Å ³	Prism, yellow
Z = 4	$0.40 \times 0.30 \times 0.30$ mm
$D_x = 1.346 \text{ Mg m}^{-3}$	
Data collection	
Enraf-Nonius FR590 diffract-	1420 reflections with $I > 2\sigma(I)$
ometer	$\theta_{\rm max} = 26.97^{\circ}$
ω –2 θ scans	$h = -12 \rightarrow 0$
Absorption correction: empirical	$k = 0 \rightarrow 23$
via ψ scans (North et al., 1968)	$l = 0 \rightarrow 11$
$T_{\min} = 0.879, T_{\max} = 0.903$	3 standard reflections
2032 measured reflections	frequency: 120 min
2032 independent reflections	intensity decay: 1.3%

Refinement

$\mathbf{P} \in \mathbf{F}^2$	$4/5^{2}(52^{2})$ (0.0400 D) ²
Refinement on F	$w = 1/[\sigma^{-}(F_{o}) + (0.0400P)^{-}]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 0.4494P]
$wR(F^2) = 0.102$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.020	$(\Delta/\sigma)_{\rm max} < 0.001$
2032 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
190 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983)
	Flack parameter $= 0.00 (17)$

Table 1

Selected geometric parameters (Å, °).

S1-C7	1.769 (4)	C2-C3	1.365 (5)
S2-C2	1.760 (4)	C3-C4	1.401 (5)
O1-C1	1.236 (4)	C4-C5	1.348 (6)
C1-C7	1.459 (5)	C5-C6	1.394 (6)
C1-C2	1.467 (5)	C6-C7	1.371 (5)
C7-S1-C8	106.6 (2)	C2-S2-C15	104.76 (19)
C7-S1-C8-C9	78.8 (4)	C11-O3-C12-C13	-174.4 (4)
C10-O2-C9-C8	-176.9(4)	C14-O4-C13-C12	177.1 (4)
S1-C8-C9-O2	-66.9(5)	O3-C12-C13-O4	-91.7 (6)
C9-O2-C10-C11	-175.7(4)	C13-O4-C14-C15	-175.8(4)
C12-O3-C11-C10	-174.8(5)	O4-C14-C15-S2	66.2 (4)
O2-C10-C11-O3	73.0 (6)	C2-S2-C15-C14	-75.7 (3)

All H atoms were calculated at ideal positions and constrained to ride on their parent atoms. Isotropic displacement parameters of H atoms were fixed at $1.2U_{eq}$ of the parent atoms.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1999);

program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXL*97.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bacon, E. & Kirch, M. (1985). J. Membr. Sci. 24, 185-199.
- Bacon, E. & Kirch, M. (1987). J. Membr. Sci. 32, 159-173.
- Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Izatt, R. M., Bruening, R. L., Clark, G. A., Lamb, J. D. & Christensen, J. J. (1985a). J. Membr. Sci. 26, 77–86.
- Izatt, R. M., Clark, G. A. & Christensen, J. J. (1985b). J. Membr. Sci. 24, 1-5.
- Izatt, R. M., Jones, M. B., Lamb, J. D., Bradshaw, J. S. & Christensen, J. J. (1986). J. Membr. Sci. 26, 241–250.
- Kato, N., Kubo, K., Mori, A. & Takeshita, H. (1995). *Heterocycles*, 41, 1901– 1904.
- Kubo, K., Kato, N., Mori, A. & Takeshita, H. (1995). Chem. Lett. pp. 629-630.
- Kubo, K., Kato, N., Mori, A. & Takeshita, H. (2000). Heterocycles, 53, 535-538.
- Kubo, K., Mori, A., Kato, N. & Takeshita, H. (1996). Acta Cryst. C52, 1656– 1658.
- Kubo, K., Mori, A., Kato, N. & Takeshita, H. (1998). *Heterocycles*, **49**, 385–392. Mori, A., Kubo, K., Kato, N., Takeshita, H., Shiono, M. & Achiwa, N. (1998).
- Holi, A., Kubo, K., Kato, N., Takesinta, H., Sinono, M. & Achiwa, N. (1998). Heterocycles, **47**, 149–152.
- Mori, A., Kubo, K. & Takeshita, H. (1996). Coord. Chem. Rev. 148, 71-96.
- Mori, A., Kubo, K. & Takeshita, H. (1997). Heterocycles, 46, 509-516.
- North, A. T. C., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Parham, H. & Shamsipur, M. (1994). J. Membr. Sci. 86, 29-35.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Takeshita, H., Yin, B. Z., Kubo, K. & Mori, A. (1993). Bull. Chem. Soc. Jpn, 66, 3451–3455.